An Approach to Functionalized Cubanes. Regioselectivities and Frontier Molecular Orbital Analysis in the Addition of Dimethyl Cyclobutadiene-1,2dicarboxylate to Quinone

Goverdhan Mehta,* M. Balaji Viswanath, Eluvathingal D. Jemmis* and G. Narahari Sastry School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 134, India

$4+2$ Cycloaddition between dimethyl cyclobutadiene-1,2-dicarboxylate and benzoquinone, 4, gives 6, $\mathbf{7}$ and 8 in the ratio 15:4:1. Similarly naphthoquinone, 5, furnishes 9, 10 and 11 in the ratio $11: 1: 2$. Formation of symmetrical adducts is predominent in both cases. Irradiation of major adducts 6 and 9 results in a cascade of photorearrangements. Semiempirical AM1 calculations are used to rationalize the regioselectivities.

Highly functionalized cubane derivatives 1 have evoked a great deal of interest in recent years and have been projected as the promising materials for the 1990s and the 21st century. ${ }^{1}$ Much of the efforts directed towards the synthesis of 1 have focused on the amplification of pre-existing functionality on the preformed cubane framework. In particular, placement of a polycarboxylic acid functionality has been considered advantageous and through innovative approaches a pentacarboxylated cubans 2 has been reported recently. ${ }^{1,2}$

1

2

3

An alternative and simpler route to 1 might be possible by incorporating additional functionality into the precursors of cubane syntheses. ${ }^{1 a}$ This approach, within the framework of the Petit cubane synthesis, ${ }^{3}$ would require cycloaddition between a substituted benzoquinone and a functionalized cyclobutadiene, Scheme 1. Consequently, we have studied the cycloaddition

Scheme 1
between dimethyl cyclobutadiene-1,2-dicarboxylate liberated from the iron complex 3 and benzo-(4) and naphtho-quinones (5) and studied the photoirradiation of the derived major adducts. We have also performed semiempirical MO calculations to rationalize the regioselectivities in the cycloaddition between 3 and the quinones 4 and 5 .

Liberation of dimethyl cyclobutadiene-1,2-dicarboxylate from its iron tricarbonyl complex $3^{4,5}$ in the presence of benzoquinone 4 furnished three regioisomeric $1: 1$ adducts 6,7 and 8
in the ratio $16: 4: 1$, respectively, in $40-50 \%$ yield. Structures of 6 and 7 were deduced on the basis of complementary ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, while the presence of 8 was elicited from a chromatographically enriched fraction, Scheme 2. Similarly,

Scheme 2 Reagents: i, 3, CAN, $0^{\circ} \mathrm{C}$, acetone; ii, Pyrex, EtOAc; ii, $h v$ (β-cleavage)
disengagement of iron from 3 in the presence of naphthoquinone 5 yielded three regioisomeric adducts 9,10 and 11 in a $11: 1: 2$ ratio, in over 80% yield. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data enable unambiguous structural assignment of all the three adducts, Scheme 3. The regioselectivities observed in the cycloaddition

10

21

Scheme 3 Reagents: i, 3 CAN, $0^{\circ} \mathrm{C}$, acetone; ii, $h \nu$, EtOAc
to $\mathbf{4}$ and $\mathbf{5}$ have been further probed through MO calculations (vide infra).

As a prelude to the theme depicted in Scheme 1, photoirradiation of the major adducts 6 and 9 was studied. On irradiation with sunlight in a Pyrex vessel, 6 was seen to be consumed (TLC) and a complex mixture resulted, from which two strongly UV-absorbing products 19 and 20 (2:3) could be isolated in 30% yield. The structural identity of 19 and 20 was established through proton-decoupling experiments at 400 MHz . Formation of $\mathbf{1 9}$ and $\mathbf{2 0}$ was indicative of a cascade of photochemical reactions involving the pentacyclic cage dione 14. Initial $[2+2]$-photocycloadditions in 6 furnished the intermediate 14, which could not be purified owing to its propensity to form hydrates. Continued irradiation of 14 led to the intermediate tricyclic bis-enones $\mathbf{1 7}$ and $\mathbf{1 8}$ through an uncommon photochemical β-cleavage reaction followed by cyclobutane fragmentation. ${ }^{6}$ Of 17 and 18 , the latter seems to predominate owing to preferred cleavage of the unsubstituted cyclobutane ring (broken lines in 14). This preference can be understood in terms of the relative captodative stability of the two regioisomeric diradical intermediates, 15 and 16, formed from 14 en route to 17 and 18 . While the acceptor groups flanking the diradical remain the same in 15 and 16 , the donor abilities of the cyclobutyl-carbinyl bond is clearly favoured in the latter. ${ }^{7}$ The cis, syn, cis-tricyclic systems 17 and 18 undergo symmetry-allowed [$[1,3]$-suprafacial shifts to furnish stereoselectivity exo-19 and exo-20, respectively, as the end products of photoirradiation. There is precedence for the rearrangement of the type $\mathbf{1 7 \rightarrow 1 9}$ and $\mathbf{1 8 \rightarrow 2 0 . 8}$. While photolability of $\mathbf{1 4}$ thwarted further pursuit of Scheme 1, an interesting one-pot rearrangement sequence $6 \rightarrow \mathbf{1 4} \boldsymbol{\rightarrow 1 7} \rightarrow \mathbf{1 9}$ has been observed.

The major adduct 9 from naphthoquinone on photoirradiation underwent only a cyclobutene ring-opening reaction and in-situ dehydrogenation to furnish the anthraquinonedicarboxylic acid diester 21 in 54% yield. The ${ }^{1} \mathrm{H}$ NMR spectral data of 19 enabled its ready characterization. No intramolecular cyclization products were detected in the case of 9 .

FMO Analysis.-1,2-Disubstituted cyclobutadienes released from $\mathrm{Fe}(\mathrm{CO})_{3}$ exists in two isomeric forms 22 and 23 which are

in dynamic equilibrium. ${ }^{9}$ We have studied the frontier orbital control of dimethyl cyclobutadiene-1,2-dicarboxylate-quinone cycloadditions using the semiempirical AM1 Method. ${ }^{10} \mathrm{Cal}-$ culations indicate that $\mathbf{2 2}$ is more stable than $\mathbf{2 3}$ by 1.1 kcal $\mathrm{mol}^{-1} . \dagger \ddagger$ The frontier orbitals, HOMO and LUMO, of the two forms of the cyclobutadienes are depicted in Fig. 1. These are

$-9.89 \mathrm{eV}$

$-9.78 \mathrm{eV}$

$-1.76 \mathrm{eV}$

LUMO

$-1.95 \mathrm{eV}$

$-1.55 \mathrm{eV}$

Fig. 1 Frontier orbitals of the cyclobutadiene 22 and 23
very similar. The difference in the coefficient sizes on all the carbons is extremely small and should contribute little to the regioselectivity.

The benzoquinone HOMO is a π MO based on the benzene ring with no coefficient on the quinone double bond and hence can have little intereaction with the cyclobutadiene molecule. The LUMO is a π^{*} of the quinone double bond and suitable to interact with the cyclobutadiene molecule. The energy difference [HOMO (of 22) - LUMO (of 4)] is 8.13 eV . The HOMO +1 of $\mathbf{4}$ has the right symmetry to interact but the energy difference (LUMO - HOMO $+1=9.64 \mathrm{eV}$) is very large. Similarly, in naphthoquinone only the LUMO has the appropriate symmetry to interact with the cyclobutadiene orbitals, HOMO (of 22) - LUMO (of 5) is 8.34 eV . The HOMO of naphthoquinone does not have the right symmetry. HOMO +3 , the orbital with the right symmetry, is not energetically favourable (LUMO of $\mathbf{2 2}-$ HOMO +3 of $\mathbf{5}=$ 9.57 eV). Fig. 1 gives the LUMOs of benzoquinone and naphthoquinone which have the right symmetry to interact with

[^0]the cyclobutadiene orbitals. The adduct formation is essentially controlled by the interaction between the LUMO of quinone and the HOMO of cyclobutadiene. On [4+2]-cycloaddition with quinones, $\mathbf{2 2}$ gives rise to symmetrical adducts and $\mathbf{2 3}$ gives unsymmetrical adducts. As 22 is more stable than $\mathbf{2 3}$ by 1.1 kcal $\mathrm{mol}^{-1}, \mathbf{2 2}$ is present in excess at equilibrium. This may explain the preferential formation of symmetric products (6,7 and 9,10) compared with the unsymmetrical products (8 and 11). All the cycloadditions benefit from the secondary orbital interactions roughly to the same extent. ${ }^{12}$

We are not able to give a clear explanation for the ratio of the symmetrical adducts obtained. Molecular mechanics calculations show that the transition states for the formation of 6 and 9 are sterically less favoured than those corresponding to 7 and $\mathbf{1 0}$ by $c a .4 \mathrm{kcal} \mathrm{mol}^{-1}$. AM1 calculations indicate that 6 and 9 are more stable than 7 and 10 by 12.2 and $11.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. In the absence of any clear preference based on FMO theory, we attribute the results to the greater stability of 6 and 9 . This is also supported by our previous results on the oligomerization of dimethyl cyclobutadiene-1,2-dicarboxylate and its cycloaddition with norbornadiene. ${ }^{13.14}$

Experimental

Diels-Alder Reaction between p-Benzoquinone and Dimethyl Cyclobutadiene-1,2-dicarboxylate.-A solution of p-benzoquinone ($70 \mathrm{mg}, 0.64 \mathrm{mmol}$) and dimethyl cyclobutadiene-1,2-dicarboxylate-iron tricarbonyl complex 3 ($200 \mathrm{mg}, 0.64 \mathrm{mmol}$) in dry acetone ($5 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$. Ceric ammonium nitrate $(1.071 \mathrm{~g}, 1.94 \mathrm{mmol})$ was slowly added to this solution in portions and the stirring was continued for 4 h . The reaction mixture was quenched with water ($5 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$). Removal of the solvent at room temperature under reduced pressure gave a crude mixture $(174 \mathrm{mg})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this mixture indicated the presence of adducts $\mathbf{6 , 7}$ and $\mathbf{8}$ in the ratio $15: 4: 1$. On fractional crystallization from dichloromethane-hexane the major adduct 6 ($57 \mathrm{mg}, 32 \%$) was readily obtained: m.p. 118$119^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2950,1720,1630$ and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $100 \mathrm{MHz}) 6.7(2 \mathrm{H}, \mathrm{s},-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}), 3.86(4 \mathrm{H}, \mathrm{m})$ and $3.76\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 25.0 \mathrm{MHz}\right) 195.71,160.30$, 143.95, 143.47, 52.12, 43.00 and 41.47 (Found: C, 60.6; H, 4.3. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}$ requires C, $60.87 ; \mathrm{H}, 4.38 \%$). The mother liquor, after separation of 6 , was concentrated and chromatographed on a silica gel column. Elution with 40% ethyl acetate-hexane furnished the minor adduct $7(23 \mathrm{mg}, 12.8 \%)$: m.p. $85-86^{\circ} \mathrm{C}$, $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 2950, \quad 1720, \quad 1680$ and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $100 \mathrm{MHz}) 6.78$ ($2 \mathrm{H}, \mathrm{s},-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-$), $6.36(2 \mathrm{H}, \mathrm{s}$, $-\mathrm{CH}=\mathrm{CH}-), 4.16(2 \mathrm{H}, \mathrm{s},-\mathrm{COCH}-)$ and $3.76\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 25.0 \mathrm{MHz}\right)$ 195.47, $168.59,143.83,138.83,59.59$, 52.94 and 42.94 (Found: C, $60.8 ; \mathrm{H}, 4.35 . \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}$ requires C , $60.87 ; \mathrm{H}, 4.38 \%$). The overall recovery was only 45% and it would seem that considerable decomposition had occurred on the column.

Diels-Alder Reaction between 1,4-Naphthoquinone and Dimethyl Cyclobatadiene-1,2-dicarboxylate.-A solution of 1,4naphthoquinone ($130 \mathrm{mg}, 0.82 \mathrm{mmol}$) and dimethyl cyclo-butadiene-1,2-dicarboxylate-iron tricarbonyl complex 3 (253 $\mathrm{mg}, 0.82 \mathrm{mmol})$ in dry acetone $\left(10 \mathrm{~cm}^{3}\right)$ was cooled to $0^{\circ} \mathrm{C}$. Ceric ammonium nitrate ($1.35 \mathrm{~g}, 2.46 \mathrm{mmol}$) was slowly added in portions and stirring was continued for 5 h after which the reaction mixture was quenched with water ($5 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$) removal of the solvent at room temperature under reduced pressure gave a crude mixture (275 mg) which was loaded onto a silica gel column. Elution with 30% ethyl acetate-hexane gave the minor adduct 11 ($18 \mathrm{mg}, 6.7 \%$) which was recrystallized from
dichloromethane-hexane: m.p. $118-119^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2970, 1725, 1680 and $1595 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 7.9(4 \mathrm{H}, \mathrm{m})$, $6.34(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}=\mathrm{CH}-), 4.38(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH})$ and $3.81(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 25.0 \mathrm{MHz}\right) 194.20,168.88,139.00,136.95$, 134.71, 127.42, 59.47, 52.88 and 44.12 (Found: C, 66.45; H, 4.3. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C, $66.25 ; \mathrm{H}, 4.32 \%$). Further elution of the column with the same eluent gave the adduct $10(30 \mathrm{mg}, 11.2 \%)$ which was recrystallized from dichloromethane-hexane: m.p. $155-156^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2950, 1730, 1710, 1675 and 1600 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 7.87(4 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{s}), 4.48(1 \mathrm{H}, \mathrm{m})$, $3.98(2 \mathrm{H}, \mathrm{m}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and $3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 25.0 \mathrm{MHz}\right) 195.24,192.95,169.42,147.42,139.54$, 136.83, 134.71, 134.48, 127.47, 127.12, 55.65, 52.82, 51.70, 46.47, 42.88 and 42.53 (Found: C, $66.3 ; \mathrm{H}, 4.25 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}$ requires C , $66.25 ; \mathrm{H}, 4.32 \%$). Continued elution with 40% ethyl acetatehexane gave the major adduct $9(196 \mathrm{mg}, 73 \%)$ and was recrystallized from dichloromethane-hexane: m.p. $119-120^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2950,1735,1710,1675$ and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ;\right.$ $100 \mathrm{MHz}) 7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.98(4 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz})$ and 3.61 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} ; 25.0 \mathrm{MHz}\right), 194.30,160.06,143.67$, 137.12, 134.36, 127.06, 51.88, 43.06, 42.59 (Found: C, 66.3; H, 4.4. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}$ requires $\mathrm{C}, 66.25 ; \mathrm{H}, 4.32 \%$). The combined yield of 9-11 was 91% in the ratio $11: 1: 2$.

Sunlight Irradiation of the Adduct 6.-A solution of the adduct $6(50 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $90 \mathrm{~cm}^{3}$ of ethyl acetate was irradiated in a Pyrex vessel with sunlight for $3-4 \mathrm{~h}$. After concentration under reduced pressure the residue was loaded onto a silica gel column and elution with 40% ethyl acetatehexane furnished a mixture of the tricyclic enones 19 and 20 (15 $\mathrm{mg}, 30 \%$) in a 2:3 ratio (by ${ }^{1} \mathrm{H}$ NMR spectroscopy). $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $400 \mathrm{MHz}) 7.55(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}$ in 20$)$, $7.52(1 \mathrm{H}, \mathrm{d}$, $J=4 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}$ in 19), $7.42(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}$ in 20$)$, 6.82 (1 H , br s, C4-H in 19), 6.30 ($1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}$ in 20), $3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Cl}-\mathrm{H}$ in 20), 3.6-3.5 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} 7-\mathrm{H}$ in 20), $3.48(1 \mathrm{H}, \mathrm{d}, J=4 \mathrm{~Hz}, \mathrm{Cl}-\mathrm{H}$ in 19), $3.31(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}$ in 19$)$, $2.93(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-\mathrm{H}$ in 20) 2.70 ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}$ in 19); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2950$, 1790, 1710, 1690 and 730.

Irradiation of the Adduct 9.-A solution of the adduct 9 (15 $\mathrm{mg}, 0.046 \mathrm{mmol}$) in $125 \mathrm{~cm}^{3}$ of ethyl acetate was irradiated using a 450 W Hanovia Hg lamp with a Pyrex filter for 6 min . The solvent was removed and the residue was loaded onto a silica gel column. Elution with 40% ethyl acetate-hexane furnished the anthraquinone diester 21 ($8 \mathrm{mg}, 54 \%$) and was recrystallized from dichloromethane-hexane: m.p. $158-160^{\circ} \mathrm{C}$ (lit.,15 m.p. $160^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2950,1730,1680$ and 1600 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 100 \mathrm{MHz}\right) 8.69(2 \mathrm{H}, \mathrm{s}), 8.08(4 \mathrm{H}, \mathrm{m}), 4.0(6 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$) (Found: C, $67.0 ; \mathrm{H}, 3.7 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{6}$ requires C, 66.67 ; $\mathrm{H}, 3.73 \%$).

Acknowledgements

M. B. V. and G. N. S. thank the Council of Scientific and Industrial Research, New Delhi for Senior Research Fellowships. We also thank a referee for a helpful suggestion.

References

1 (a) G. W. Griffin and A. P. Marchand, Chem. Rev., 1989, 89, 997; (b) P. E. Eaton, Angew. Chem., Int. Ed. Engl., 1992, 31, 1421.

2 A. Bashir-Hashemi, Angew. Chem., Int. Ed. Engl., 1993, 32, 612.
3 J. C. Barborak, L. Watts and R. Pettit, J. Am. Chem. Soc., 1966, 88, 1328.

4 G. Berems, F. Kaplan, R. Rimberman, B. W. Roberts and A. Wissner, J. Am. Chem. Soc., 1975, 97, 7076.

5 G. Mehta and S. H. K. Reddy, Tetrahedron Lett., 1991, 32, 4989.

6 G. Mehta and S. H. K. Reddy, Tetrahedron Lett., 1991, 32, 6403.
7 H. G. Viche, R. Merenyi, L. Stella and Z. Janousek, Angew. Chem. Int., Ed. Engl., 1979, 18, 917.
8 (a) G. Mehta and S. H. K. Reddy, Synlett, 1993, 75; (b) P. E. Eaton and S. A. Cerefice, J. Chem. Soc., Chem. Commun., 1970, 1494.

9 (a) P. Reeves, T. Devon and R. Pettit, J. Am. Chem. Soc., 1969, 91, 5891; (b) B. Witulski, L. Ernst, P. G. Jones and H. Hopf, Angew. Chem., Int. Ed. Engl., 1989, 28, 1279
10 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

11 M. J. S. Dewar, M. C. Kohn and N. Trinajstic, J. Am. Chem. Soc., 1971, 93, 3437.

12 I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, New York, 1976.
13 G. Mehta, M. B. Viswanath, G. N. Sastry, E. D. Jemmis, D. S. K. Reddy and A. C. Kunwar, Angew. Chem., Int. Ed. Engl., 1992, 31, 1488.

14 G. Mehta, M. B. Viswanath, M. Nethaji and K. Ventasan, J. Chem. Soc., Chem. Commun., 1992, 82.
15 P. G. Copeland, R. E. Dean and D. McNeil, J. Chem. Soc., 1961, 3858.

Paper 3/05521C
Received 14th September 1993
Accepted 3rd December 1993

[^0]: \dagger Such small energy differences are expected in these systems. The corresponding difference for the dicyano derivative is calculated to be $0.85 \mathrm{kcal} \mathrm{mol}^{-1}$ at the AM1 and $2.47 \mathrm{kcal} \mathrm{mol}^{-1}$ at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level. Semiempirical studies of vicinal diphenylcyclobutadienes has given a difference of about $1 \mathrm{kcal} \mathrm{mol}^{-1}$ between the two isomers. ${ }^{11}$
 $\ddagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

